Skip to main content

When is a Number, Not a Number?

 When Is a Number, Not a Number?

What numbers are not numbers? In some cases, as discussed below, information is represented with digits but does not represent a numeric value to be used in arithmetic operations. Basically, there are three types of numbers in general use: symbols, ordinals, and cardinals.

Symbols

Many of the numbers we use every day are not numbers at all. They are identifiers of some sort, not representing quantities or ranks. Here are the most common examples:

·        Phone Numbers: These are now almost entirely digital. Years ago, shorter numbers included an alphabetic prefix. For example, an old phone number might have been “LI5-7624”, where "LI" stood for "Lincoln." Now, area codes and country codes are required for calls between cities and countries, respectively.

·        Identification Numbers: These include Social Security numbers, student numbers, serial numbers, part numbers, etc. They are digital identifiers for which no mathematical operations can be performed.

·        Credit Card Numbers: These are among our most important “numbers though not numbers.” Typically, they have 16 digits, along with a special three-digit security code visible only to the physical cardholder.

·        Vehicle Identification Numbers (VINs): These are 17-character codes containing mostly digits and some letters. Similarly, router ID numbers are usually formed with fewer digits.

·        Postal (ZIP) Codes: These are five-digit codes used for mail delivery. For example, my ZIP code is 77840. ZIP codes start from 00501. The ZIP+4 system extends the standard five-digit ZIP code with four additional digits to improve mail delivery accuracy and speed.

·        Addresses: An address might be something like 2932. Doubling it or taking its square root has no meaning relative to the address. For apartment complexes, the address would include "Street address + Building number + Unit number," none of which make sense for arithmetic operations.

It may seem odd, though true, that many of the numbers in your life are not numbers at all, but merely symbols. Our next category, ordinals, are not truly numbers either, but they do have an "ordering," making them closer to actual numbers, the cardinals.

Ordinals (or Ranks)

These are rankings: first, second, third, and so forth, often abbreviated as 1st, 2nd, 3rd, etc. They are not suitable for arithmetic. For example, you cannot add 1st and 2nd to get anything meaningful. Consider tennis rankings: the rank is an ordinal number based on tournament points scored over a year. Arithmetic does not apply, but you can consider the number of those ranked between various rankings.

Ordinals are crucial when ranks are important, such as in sports, stocks, wealth, and all forms of measurable excellence where there is a "top dog." In the animal kingdom, the alpha leader (1st) of any pack makes decisions, eats first, and controls reproductive activities. The matriarch/patriarch of a family or herd is the de facto leader, controlling important decisions. Similarly, business operations, organized religions, and governments are based on an ordinal hierarchy. Military organizations and operations are strictly hierarchical (ordinal) by nature.

While ordinals are not truly numbers in the sense of arithmetic, they have supreme importance in organized society and all organizations. Let us now turn to the “real” numbers on which all mathematics and our daily lives depend.

Cardinals

Cardinals represent quantities, like apples, volts, dollars, etc. These are the only numbers suitable for arithmetic to obtain meaningful values. For instance, you can add two apples to three apples to get five apples, but you cannot add two apples to three oranges meaningfully. In school, math class typically deals with cardinals without tags, i.e., abstract numbers.

Cardinals can extend to fractions, decimals, and real numbers. Infinity (∞) has unique arithmetic properties such as ∞ + ∞ = ∞. Cardinals can be abstracted to new objects such as groups, rings, and fields, which have arithmetic-like properties. These are very useful in modern living, though we rarely see them. One particular number system, the binary system, is highly useful in computing machines.

Cardinals, rationals, and reals form the class of numbers that truly are the numbers we love – and need.

Comments

Popular posts from this blog

Behavioral Science and Problem-Solving

I.                                       I.                 Introduction.                Concerning our general behavior, it’s high about time we all had some understanding of how we operate on ourselves, and it is just as important how we are operated on by others. This is the wheelhouse of behavioral sciences. It is a vast subject. It touches our lives constantly. It’s influence is pervasive and can be so subtle we never notice it. Behavioral sciences profoundly affect our ability and success at problem-solving, from the elementary level to highly complex wicked problems. This is discussed in Section IV. We begin with the basics of behavioral sciences, Section II, and then through the lens of multiple categories and examples, Section III. II.     ...

Where is AI (Artificial Intelligence) Going?

  How to view Artificial Intelligence (AI).  Imagine you go to the store to buy a TV, but all they have are 1950s models, black and white, circular screens, picture rolls, and picture imperfect, no remote. You’d say no thanks. Back in the day, they sold wildly. The TV was a must-have for everyone with $250 to spend* (about $3000 today). Compared to where AI is today, this is more or less where TVs were 70 years ago. In only a few decades AI will be advanced beyond comprehension, just like TVs today are from the 50s viewpoint. Just like we could not imagine where the video concept was going back then, we cannot really imagine where AI is going. Buckle up. But it will be spectacular.    *Back then minimum wage was $0.75/hr. Thus, a TV cost more than eight weeks' wages. ------------------------- 

Principles of Insufficiency and Sufficiency

   The principles we use but don't know it.  1.      Introduction . Every field, scientific or otherwise, rests on foundational principles—think buoyancy, behavior, or democracy. Here, we explore a unique subset: principles modified by "insufficiency" and "sufficiency." While you may never have heard of them, you use them often. These terms frame principles that blend theory, practicality, and aspiration, by offering distinct perspectives. Insufficiency often implies inaction unless justified, while sufficiency suggests something exists or must be done. We’ll examine key examples and introduce a new principle with potential significance. As a principle of principles of these is that something or some action is not done enough while others may be done too much. The first six (§2-6) of our principles are in the literature, and you can easily search them online. The others are relatively new, but fit the concepts in the real world. At times, these pri...